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Abstract~- The eigenfunction expansion method is used to obtain numerical Green's functions to
solve for deflection of irregular-shaped classical plates. The associated eigenvalue problem allows
to express the Green's function as a series of eigenfunctions which are approximated by a series of
polynomials that satisfy the homogeneous boundary conditions to which the plates are subjected.
A computer algebra system (Mathematica) has been extensively used to construct the approximate
Green's functions consisting of polynomials, reducing substantially the amount of work involved
in the calculation and achievement of the solution. Copyright [) 1996 Elsevier Science Ltd.

I. INTRODUCTION

Classical plate theory has been investigated for a long time since the last century and
numerous analytical techniques have been developed exemplified by Levy's method and
Navier's method (see Reddy, 1984). However, the shape and the boundary conditions for
which those analytical methods can be used are very limited and purely numerical methods
such as the finite element method are routinely used.

The Green's function approach has been well-known in micromechanics but little is
known about the Green's function for plates except for simple cases such as homogeneous
and infinitely-extended plates (applied to the boundary element method).

Melnikov (1977) used a Green's function approach for a body whose boundary shape
does not coincide with the coordinate surface based on the Green's function available for
regular shapes. Irschik and Ziegler (1981) applied the Green's function method for a
polygonal plate by embedding in a rectangular domain by applying coincidence of boun
daries as possible. Qin et al. (1991) investigated a classical plate that was extended to
infinity with an inclusion at the center and concluded that the stress field inside the inclusion
becomes uniform. Nomura and Choi (1994) showed a Green's function approach for 2-D
elasticity problems as the base for the present approach.

The advantage of the Green's function approach is that once the Green's function is
found, the deflection can be expressed by the convolution type integral between the Green's
function and distributed lateral loads. The Green's function solution contains all the
boundary conditions so the solution can be evaluated without extra calculations when the
boundary conditions are altered.

In this paper, a systematic way of constructing Green's functions for Kirchhoff type
plates with irregular shapes is presented. This paper is the first attempt to derive numerical
Green's functions for such plates to the authors' best knowledge. The Green's function for
plates can be expressed by eigenfunctions for the associated eigenvalue problem. The
eigenfunctions are then expressed by a linear combination of trial functions each of which
satisfies the homogeneous boundary conditions. The Galerkin's method is employed to
obtain the coefficients of the trial functions.
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Determination of trial functions that may satisfy the homogeneous boundary con
ditions and manipulation of the trial functions in the Galerkin procedure call for a tremen
dous amount of algebra for which the use of a computer algebra system, i.e. Mathematica
(1988) is essential.

It is found that numerical results for the deflection of classical plates give almost
identical values to the available classical methods for regular geometry (rectangles). As a
demonstration of the present approach, deflection for triangular plates is sought using the
Green's function approach.

2. SOLUTION PROCEDURE

From the classical plate theory the general differential equation for plate deflection is
given by:

Lw(x,y) = q(x,y), (1)

where w(x,y) is the deflection of the plate, q(x,y) is a distributed load function and L is
the biharmonic operator defined as

L = DtJ.tJ., (2)

where D is the flexural rigidity of the plate and tJ. is the (2-D) Laplacian operator.
Under the condition that there are no edge preloads, the unknown w(x, y) is expressed

by

w(x,y) = fLG((,ry;x,y)q((,ry)d(dry, (3)

where R is over the plate surface. The function, G«(, ry; x, y), is the Green's function which
satisfies

L*G«(,ry;x,y) = b(X-(,y-ry), (4)

where b(X-(,y-ry) is the two-dimensional Dirac delta function and L* is the adjoint
operator of L but in this case L = L* (self-adjoint). The Green's function, G«(,ry;x,y),
must satisfy the homogeneous boundary condition.

It can be shown that the Green's function, G((, ry; x,y), is expressed by

(5)

where ¢k(X,y) and Akare a k-th eigenfunction and eigenvalue, respectively, for the following
eigenvalue problem.

L¢((, ry) = }.¢((, ry). (6)

It should be noted that because of the self-adjoint nature of L, each eigenvalue is
positively defined and

(7)

where b;j is the Kronecker delta.
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The Galerkin method is used for the calculation of the eigenfunctions and the eigen
values so that the eigenfunctions can be approximated in terms of polynomials. The
eigenfunctions may be expressed as a linear combination of trial function as

n

qh(X,y) = I CkJj(X,y),
j~ 1

(8)

where Ckj are the undetermined coefficients and the trial functions, Jj(x, y) (polynomials in
x and y), satisfy the prescribed homogeneous boundary conditions. Their form is given by

(9)

where Fji are unknown coefficients to be determined. Substituting the eigenfunctions expressed
by eqn (8) into (6), multiplying both terms by f and integrating over the entire area yield

or

where

and C(k) is the vector,

n n

I AiiCk/ = Ak I BJjCkj,
i~ 1 j~ 1

(

Ckl )
C(k) = : .

Ckn

(10)

(11)

(12)

Equation (11) is a generalized eigenvalue problem whose solution technique is readily
available. The matrix B is symmetrical and positive definite. In general, for very large
matrices the problem may be solved most efficiently by using the Cholesky decomposition.

3. NUMERICAL EXAMPLES

This section presents some numerical examples of triangular plates with clamped and
simply-supported edges in order to demonstrate the developed procedure.

It is necessary to choose the trial functions for the given geometry and boundary
conditions. If the region is expressed by a set of curved lines (j; (x, y) = 0J2(X, y) = O...),
the trial function of eqn (9) for simply supported and clamped edges can be expres
sed as fl(X,y) xfix,y) x '" (Foo +FlOx+F01Y +F20X2+F11 xy+F02l+ ...). The unknown
coefficients (Fii) can be determined so as to satisfy the remaining boundary conditions
(o2w/cPn = 0 for simply supported edges or ow/on = 0 for clamped edges). For
free edges, J;(x,y)'s are assumed to be polynomials in the form of Foo +
FlOX+FOly+F20X2+FIIXy+F02.l+ '" and each coefficient is chosen to satisfy the
free-edge boundary conditions. In either case, a set of underdetermined simultaneous
equations need to be solved for the unknowns Fij that can be performed symbolically or
numerically on a routine basis. The minimum order of polynomials can be determined so
that the underdetermined equations have at least one set of solution. A computer algebra
system can be used to expand j; Lfj in the form of "f."f.bJjxiyj so that integration offtLJj over
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z

Fig. I. Triangular plate under uniformly distributed load.

y

the given region is reduced to integration of x'y! which can be carried out analytically for
a wide variety of shapes.

As a first test of the present method, the Navier's solution for deflection of classical
plates (Kirchoff type) with simply supported edges was compared with the Green's function
method. As far as numerical results are concerned, the present approach yielded numerically
identical results with the Navier's method which serves as verification of the present method.

Next, the analysis was performed for an isosceles right-angle (90°) triangle with two
equal sides, therefore a = b = 1 as shown in Fig. 1. Poisson's ratio values (v) of 3/10 and
1/6 are used to match the results found in the literature ([1, 4]). The load q is uniformly
distributed. The boundary conditions for the triangular plate shown in Fig. 1 are as follows:

-for a clamped edge

w = 0,

-for a simply supported edge

w= 0,

where n is the normal to the boundary.

OW
on = 0, (13)

(14)

3.1. Triangular plate with all three edges clamped
Tables 1~6 are comparisons between the present method and published values where

N is the number of polynomial terms used. Table 1 shows the values for deflection at
(x, y) = (a/3, b/3) for different polynomial orders for the triangular plate with all the edges
clamped.
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Table 1. Comparison of wO/3, 1/3) and difference % for a triangular plate
with all three edges clamped

Number ~wD/qa4at Comparison
Degree ofpolyn. x = a/3, y = b/3 with Lekhnitskii (%)

6 1 0.00014289 0.07
7 3 0.00016633
8 6 0.00017652
9 10 0.00017670

10 15 0.00017784
II 21 0.00017785

Table 2. Maximum moments for a triangular plate with all three edges clamped (N = 15 and
N=21)

M,iqa2 at Comparison M~/qa2 at Comparison with
x = a/3. y = h/3 with Bares (%) x = a/3. y = b/3 Bares (%)

degree = 10 0.0080354 ~0.043 0.0080354 -0.0043
degree = II 0.0080039 -0.047 0.0080039 -0.047

Table 3. Shear forces for a triangular plate with all three edges clamped (N = 15 and N = 21)

4219

degree = 10
degree = II

Vjqamax

- 0.231339
-0.229854

Comparison with Bares (%)

~ 17.9
-18.4

V~/qa max

-0.231339
~0.229854

Comparison with Bares (%)

-17.9
-18.4

Table 4. Comparison of w(l/3, 1/3) and difference % for a triangular plate with all three edges
simply supported

Degree

6
7
8
9

10
II

Number ofpolyn.

2
5
9

14
20

-wD/qa4 at x = a/3. y = bj3

0.00007019
0.00020785
0.00049241
0.00063198
0.00063871
0.00064125

Comparison with Mansfield (%)

-23.3
-1.62
-0.57
-0.18

Table 5. Maximum moments for a triangular plate with all three edges simply supported
(N = 14 and N = 20)

M,/qa' at Comparison M,/qa2 at Comparison
x = a/3.y = b/3 with Bares (%) x = a/3, y = b/3 with Bares (%)

degree = 10 0.0186285 ~ 1.43 0.0018747 -0.08
degree = II 0.0187156 -0.09 0.0186106 -1.53

Table 6. Shear forces for a triangular plate with all three edges simply supported (N = 14 and N = 20)

degree = 10
degree = II

V,/qamax

-0.194751
-0.295335

Comparison with Bares (%)

~27.1

10.61

Vv!qa max

~0.187014

-0.286648

Comparison with Bares (%)

-29.9
7.36
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Fig. 2. Deflection for a triangular plate with three edges clamped (N = 15).
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Fig. 3. Moments in x and y for a triangular plate with all three edges clamped (N = 15).

The only numerical value available is w = -0.000143qa4ID reported by Lekhnitskii
(1987) using one polynomial approximation by the Rayleigh-Ritz method which should be
favorably compared with w = -0.00014289qa4ID in the present approach for the lowest
order approximation. As is seen from the table, the deflection values seem to converge
around w = -0.0001778qa4ID.

Tables 2 and 3 show, respectively, the values for the maximum moment and shear
force. The values for the maximum bending moment obtained by Bares (1971) were
M x = My = 0.00840qi? for v = 1/6. Bares also obtained values for the maximum shear as
Vx = Vv = -0.282qa for v = 1/6.

Figure 2 shows the deflection distribution over a triangular plate with all three edges
clamped, while Figs 3 and 4 show, respectively, the bending moment, and the shear stress
distribution in the x and y directions for the same type of plates.

3.2. Triangular plate with all three edges simply supported
In this example, a triangular plate is simply supported at all the edges. Table 4 shows

the numerical value of deflection of the triangular plate for different orders of polynomials.
Lekhnitskii (1987) obtained w = - 0.000619qa41D using three polynomials. Numerical

values using double trigonometric series expression given by Mansfield (1989) were
w = -0.00064273, -0.000642494, and -0.000642479qa4ID for (m, n) = (7, 8), (9, 10), and
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Fig. 4. Shear forces in x and y for a triangular plate with all three edges clamped (N = 15).

(11,12), respectively. Bares (1971) obtained w = -0.000667932qa4/D for v = 1/6. The
method by Timoshenko and Woinowsky-Krieger (1959) yielded w = -0.000642508qa4 /D
independent of v which is favorably compared with the present result.

The values for the maximum moments and shear force are shown in Tables 5 and
6, respectively. The maximum bending moment values obtained by Bares (1971) were
M, = 0.001 89qa2/D and M r = 0.00189qa21D for v = 1/6. Bares (1971) obtained maximum
shear values of V, = -0.267qa and Vv = -0.267qa for v = 1/6.

4. CONCLUSIONS

The associated eigenvalue problem leads to expressing the Green's function as a series
of eigenfunctions which are approximated by a series of polynomials satisfying the
homogeneous boundary conditions. The Galerkin method was preferred over other weighted
residual methods to obtain the eigenfunctions because it ensures the convergence of the
solution. Although it was not included in this paper, few runs were made using the least
square method showing a slower convergence. The undetermined coefficients of the approxi
mate eigenfunctions are the obtained eigenvectors.

With the Green's function, it is possible to express the deflection as a convolution type
integral between the Green's function and the distributed load; thus redundant computation
can be avoided when the lateral load is altered. In addition, preloads at the edges of the
plate can be easily incorporated into a boundary integral between the derivative of the
Green's function and the preload.

The use of polynomials as trial functions in this paper constitutes another deviation
from the conventional approaches found in the literature. Most of the computation was
performed using a computer algebra system, Mathematica, which can automate the nor
mally tedious and time-consuming algebra involved in the present paper.

It stands to reason that cases of plates with a greater number of edges (sides) as well
as skewed plates may also be worked using the eigenfunction expansion-based Green's
function method. The most time-consuming part of the present approach is the generation
of eigenfunctions that need to be performed symbolically. Once such a routine is written
by a computer algebra program, the rest of the numerical computation can be carried out
by conventional compilers that can be optimized. The method has been limited in this paper
to straight edges although it may be modified for curved edges. Diaz-Contreras (1994) have
also adapted the approach presented in this paper to solve for non-conventional plate
theories.
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